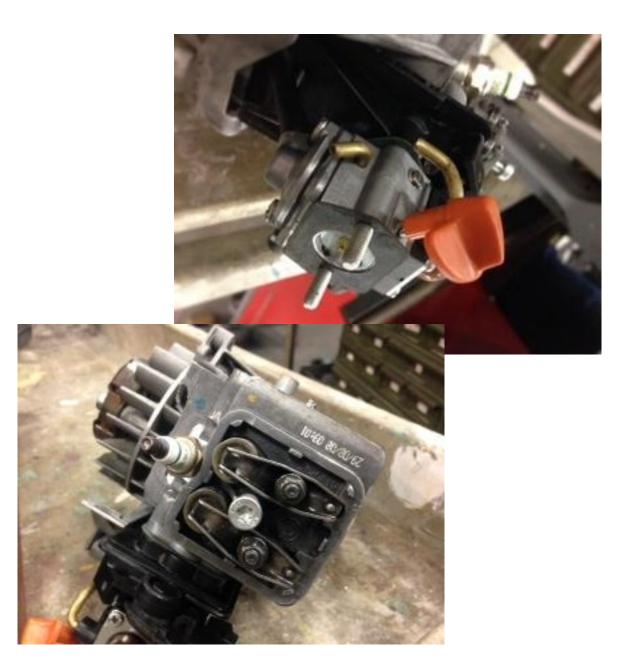
Aqua Scooter

Final Presentation

Dylan Cannon, Darin Gilliam, Eli Palomares, Elizabeth Tyler, Jiyan Wang, Tyler Winston

December 2, 2014



NORTHERN

Overview

- Objectives
- Problem Definition
- Engine Analysis
- Shell Analysis
- Final Considerations
- Conclusion
- References

Project Goal

Need

 Current Aqua Scooter model does not meet EPA regulations.

Goal

 Design an improved Aqua Scooter that exceeds EPA regulations.

Objectives

- Design an aesthetically pleasing Aqua Scooter, that complies with EPA regulations.
- The new design should be lightweight and provide similar thrust.
- The system must be buoyant and relatively cheap to manufacture.
- Must be safe for a child to use.

Objectives

- Analyze and compare gasoline, propane, and butane 4-stroke engine concepts.
- Quantify the ability for each fuel source to meet EPA regulations.
- Calculate the drag coefficients for the two final outer shell designs.
- Calculate thrust assuming a propeller that will generate a 5mph velocity.

Current Model

Two- Stroke Engine

- Used for typically greater power to weight ratio.
- Mixed oil and fuel injected into combustion chamber by carburetor.

Exhaust emissions

- Can't meet current EPA regulations.
- Unburned exhaust emissions enter the atmosphere.

Constraints

- 1/2 gallon, plastic fuel tank
- Internal combustion powered
- Metal engine and muffler
 housing
- Starter assembly is plastic and metal

- Plastic prop protection
- Control handle included
- Throttle control
- Exhaust valve
- Must be 18 pounds or less
- Must provide at least 50
 pounds thrust

Problem Definition

 Design a hydrodynamic, inexpensive, aesthetically pleasing Aqua Scooter, with a marine engine that complies with EPA regulations.

Gantt Chart

GANTT Project		2	2014													
Name	Begin date	End date	Week 36	Week 37 9/7/14	Week 38 9/14/14	Week 39 9/21/14	Week 40 9/28/14	Week 41 10/5/14	Week 42 10/12/14	Week 43	Week 44	Week 45	Week 46	Week 47	Week 48	Week 49
Contact Clinet for needs and specs	9/2/14	9/12/14														
 SOTA research 	9/2/14	9/17/14														
Prepare/practice presentation 1	9/18/14	9/22/14														
Presentation 1	9/23/14	9/23/14				٠										
 Staff Meeting 	9/30/14	10/1/14														
Idea generation	9/24/14	10/3/14					-	1								
Concept selection	10/6/14	10/9/14														
 Design Sketches 	10/10/14	10/10/14						ľ]							
Prepare/practice presentation 2	10/10/14	10/13/14														
Presentation 2	10/14/14	10/14/14							•							
 Staff Meeting 	10/21/14	10/21/14														
 Engineering Analysis 	10/15/14	11/7/14														
Prepare/practice presentation 3	11/10/14	11/12/14														
Presentation 3	11/13/14	11/13/14											•			
 Staff Meeting 	11/18/14	11/19/14														
Finalize Proposal	11/14/14	11/27/14													h	
Prepare/practice presentation final	11/28/14	12/1/14														
Final Presentation	12/2/14	12/2/14														+

Table 1: Gantt Chart and Deliverable schedule.

QFD

Aquascooter QFD Matrix	Weight	Buoyancy	Fuel Capacity	Thrust	Exhaust emission	Operating Life	Warranty	Cayago Seabob	Seadoo Seascooter
Aesthetically pleasing	Х		Х					0	0
Child safe	Х	Х		Х	Х				0
Lightweight	Х	Х	Х	Х					
Floats	Х	Х	Х					0	0
Propels operator through water				Х	Х			0	0
Runs for extended period			Х						
Meets current EPA regs.					Х	Х	Х	0	0
units	lb.	lb.	gal.	lb.	g/kW-h	Hours/Years	Hours/Months		
Customer Needs Engineering Requirements Engineering Targets	>= 18	>= 18	>= 0.5	>= 50	<=30 of Hydrocarbon, <=490 of Carbon Monoxide		>= 175/30		
Bench Marks		>= 18			of Carbon Wonoxide	-	-	I	

Table 2: QFD matrix relates customer needs and engineering requirements.

House of Quality

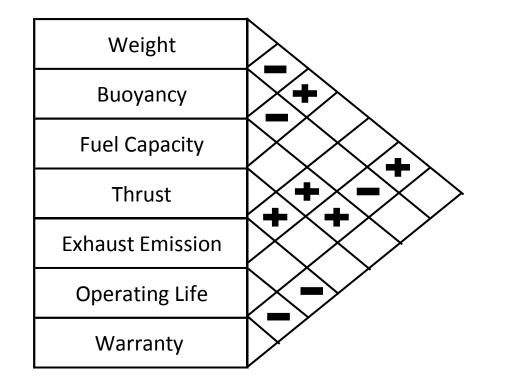


Table 3: House of quality correlates engineering requirements.

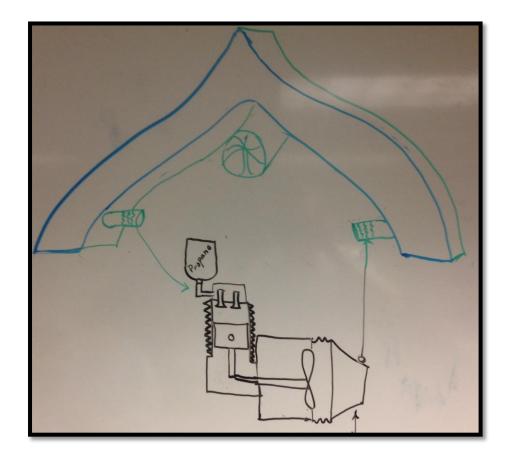
Team Concepts

- Boomerang
- Octopus
- Magneto Hydrodynamic Propulsion System
- Propane Injected 4-Stroke
- Duck Scooter
- Tank Housing

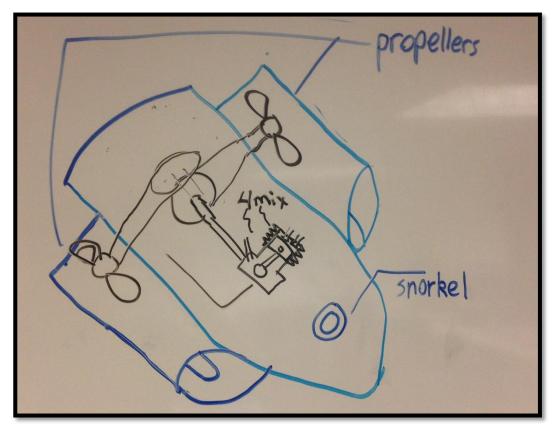
- 2 Propeller
- 4 Mix Engine
- Enclosed Housing
- Adjustable Jet
- Catalytic Converter and Coil
- Fuel Injected 2-Stroke

Decision Matrix

	Requirements and Criteria									
	Aesthetically Pleasing	Minimal Probability of Error	Ease of Manufacture	EPA Requirements	Complexity of Design	Provides Thrust	Hydrodynamic Efficient	Lightweight	Minimal Cost of Materials	Total Weighted Factor
Requirement Weighting	10%	10%	10%	20%	10%	10%	10%	10%	10%	100%
Boomerang	7 0.7	6 0.6	5 0.5			-	-	-	7.5 0.75	6.65
Octopus	6 0.6	0	4 0.4	7 1.4	4 0.4	-	-	•	5 0.5	5.6
Magnetohydrodynamic propulsion	5 0.5	3 0.3	3 0.3	7 1.4	2.5 0.25	-	6 0.6	· ·	3 0.3	4.95
Propane injected 4 stroke	7 0.7	7 0.7	7 0.7	8 1.6		5.5 0.55	7 0.7	6 (0.6	5 0.5	6.75
Duck Scooter	8 0.8	<u> </u>	-		6 0.6			6 (0.6	5 0.5	6.2
2 Propeller	8 0.8	•				8.5 0.85		5.5 0.55	6 0.6	6.7
4 Mix Engine	6.5 0.65	-	8 0.8	8.5 1.7	7 0.7	9 0.9	7 0.7	6 t	5 0.5	7.25
Enclosed Housing	7.5 0.75	8 0.8	6 0.6		5 0.5	9 0.9	7 0.7	6 ť	5 0.5	6.75
Adjustable Jet	7 0.7	6 0.6	-	-	6 0.6		8 0.8	•	6.5 0.65	6.95
Catalytic Converter and Coil	6 0.6		-	-	5 0.5		6.5 0.65	7 t 0.7	5 0.5	6.3
Fuel Injected 2 Stroke	7 0.7		5	-	5 0.5	9 0.9	7 0.7	7.5 0.75	1 0.4	6.6
Tank Housing	7.5 0.75		-	-	5.75 0.575		7.5 0.75	-	5.5 0.55	6.575


13

Criteria


 Aesthetically Pleasing 	10%
 Minimal Probability of Error 	10%
 Ease of Manufacture 	10%
 EPA Regulations 	20%
 Complexity of Design 	10%
 Provides Thrust 	10%
 Hydrodynamically Efficient 	10%
 Lightweight 	10%
 Minimal Cost of Materials 	10%

Top Two Ideas

Boomerang with 4-stroke Propane Engine
 with Adjustable Jet

 Two Propeller with 4-stroke 4-mix Engine with Adjustable Jet

Concept Analysis

- Gasoline Analysis
- Propane Analysis
- Butane Analysis
- Shell Analysis

Gasoline Analysis

Dimensions	Aqua Scooter 2-Stroke Engine (AS 650)	4-Stroke Engine (Honda GXH50)				
Length (mm)	530	225				
Width (mm)	195	274				
Height (mm)	320	353				
Weight (lb)	16.53	12.1				
Bore (mm)	40	41.8				
Stroke (mm)	39	36				
Displacement (cc)	49	49.4				
Power (HP)	2	2.1 @ 7000rpm				
Thrust (kg)	22	22				
Fuel	Mixture	Unleaded 87 Octane or Higher				
Fuel Tank Capacity (L)	2	1.89271				
Price (\$)	(+/-) 970	420				

[1]

[2]

Propane and Butane Analysis

- Assumptions
 - Calculated using Honda GXH50 converted to propane or butane.
 - Running time of 3 hours.
 - Not Adjusted for Efficiency.
- Results
 - Calculated weight of propane is 12.52 ounces.
 - Calculated weight of butane is 12.50 ounces.

Velocity Based on Thrust Calculations

Variable Values

- $V_e = 2.235 \left[\frac{m}{s}\right]$ • $T = 50lbf * \frac{4.448N}{1 \, lbf} = 222 [N]$
- $A = 0.0324 \ [m^2]$
 - diameter = 8in = .2032m

- $T = \dot{m}V_e \dot{m}V_o$
- $\dot{m} = \rho V_i A$
- $T = 2\rho A V_i^2$
- $T = \rho V_i A (V_e V_0)$

Chemical Calculations

Propane Stoichiometry

• $C_3H_8 + 5O_2 + 18.8N_2 \rightarrow 3CO_2 + 4H_2O + 18.8N_2$

Butane Stoichiometry

• $C_4H_{10} + 9O_2 + 33.84N_2 \rightarrow 4CO_2 + 10H_2O + 33.84N_2$

Air Fuel Ratio Calculations

AF Ratio for 87 Octane is 15:1

AF Ratio for Propane

- $M_{air} = 28.97$
- $M_{propane} = 44.09$
- $AF_{propane} = (5 + 18.8) * \frac{28.97}{44.09}$

•
$$AF_{propane} = 15.66 \frac{lb air}{lb propane} : 1$$

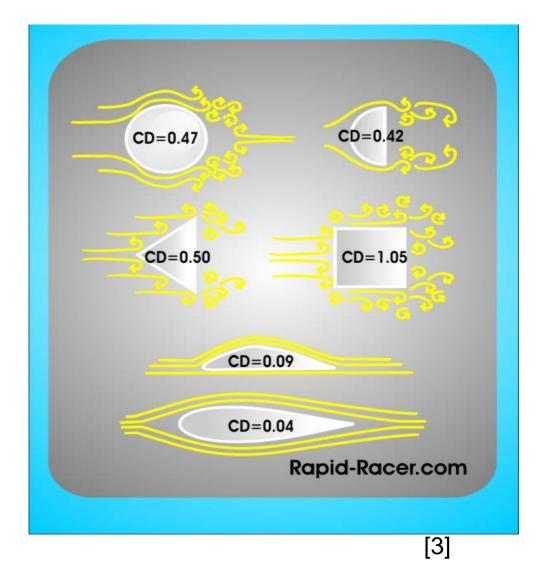
AF Ratio for Butane

•
$$M_{air} = 28.97$$

•
$$M_{butane} = 58.12$$

•
$$AF_{butane} = (5 + 33.84) * \frac{28.97}{58.12}$$

•
$$AF_{butane} = 21.36 \frac{lb \ air}{lb \ butane}$$
: 1

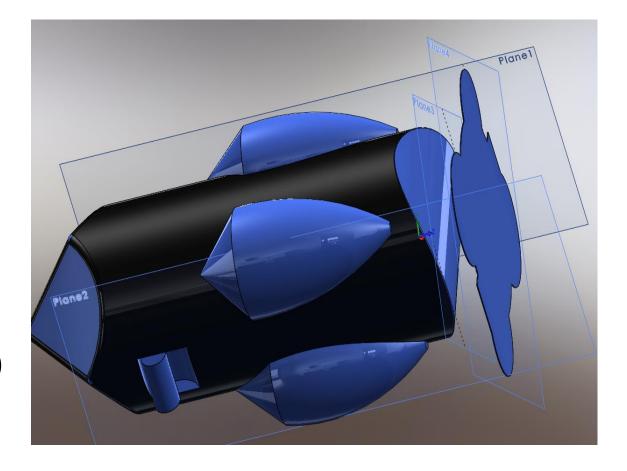

Shell Analysis

Drag Force

 $F = 0.5\rho V^2 C_d A$

Where:

F = Drag force [N] $\rho = Density \left[\frac{kg}{m^3}\right]$ $V = Velocity \left[\frac{m}{s}\right]$ $C_d = Drag Coefficient [unitless]$ $A = Area orthogonal to flow [m^2]$


Shell Analysis- Boomerang

- Assumptions
 - $C_d = 0.5$
 - $A = 1106.3in^2 = 0.714m^2$
 - $\rho = 999 \frac{kg}{m^3}$ • $V_e = 2.235 \left[\frac{m}{s}\right]$
- Drag Force
 - $F = 0.5 \rho V^2 C_d A$
 - $F = 0.5(999)(2.235^2)(.5)(0.714)$
 - F = 890.75 N

Shell Analysis- Triton

- Assumptions
- $C_d = 0.10$
- $A = 513.20in^2 = 0.3311m^2$
- $\rho = 999 \frac{kg}{m^3}$
- $V_e = 2.235 \left[\frac{m}{s}\right]$
- Drag Force
- $F = 0.5 \rho V^2 C_d A$
- $F = 0.5(999)(2.235^2)(.1)(0.3311)$
- F = 82.6N

Power Calculation

- $V_e = 2.235 \left[\frac{m}{s}\right]$
- $\mathcal{P}_d = \mathbf{F}_d \cdot \boldsymbol{v}$
 - $=\frac{1}{2}\rho v^3 A C_d$
- $\mathcal{P}_{d(boomerang)} = 1990.82W = 2.669hp$
- $\mathcal{P}_{d(Triton)} = 184.611W = 0.2475hp$

Final Concept Considerations

- Conversion Kits
- 2-Stroke Engines
- 4-Stroke Engines

- Emission Testing
 - Portable Devices
 - On-Site Testing
- Testing Environment
- Cost of Materials

Conversion Kits: Butane and Propane

- Alt Fuel
 - Regulators
 - Fuel Line
 - Attachment Line
 - Intake Adaptor
 - Bracket for Tank

- Propane Carbs
 - Spud-In Conversion System
 - Fuel Tube
 - Regulator
 - Vacuum Idle Needle

Husqvarna 2-Stroke Engine

- \$169.00
- 9.7lbs Full Dry Weight
- 28cc Displacement
- 68.5 g/kWh

[16]

Tanaka Two-Stroke Engine

- \$200.00
- 1.3HP
- 11lbs

[17]

Briggs & Stratton 4-Stroke

- \$ 199.00
- 1-HP
- 40cc Displacement
- 8lbs Dry Weight

Honda GX-25 4-Stroke Engine

- \$240.00
- 1-HP
- 25cc Displacement
- 6.8lbs Dry Weight

Emissions Testing

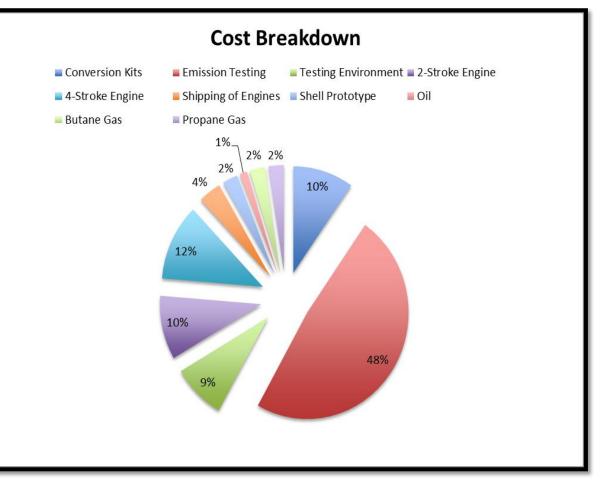
Portable Emissions

- Enerac-500-102
 - \$870.00

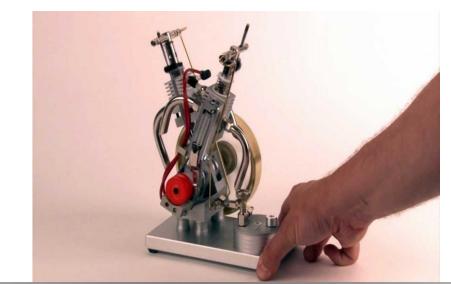
On Location Testing

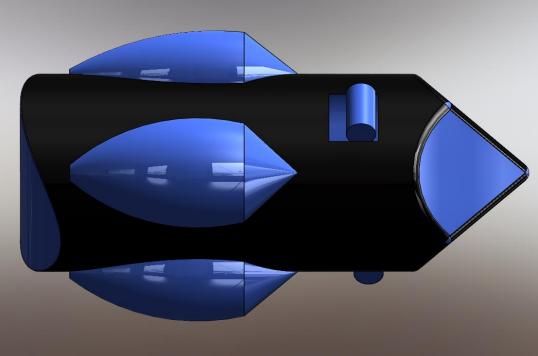
- Carnot emission services 210-928-1724
 - Gary
 - \$5000.00
- Olson-Ecologic Engine Testing Laboratories 714-774-3385.
 - David Olson
 - Currently Researching How to Test
- Deer Valley Emissions Test
 - 501West Deer Valley Road, Phoenix, AZ 85027

Campus Testing Environment


- 150 Gallon Tank
 - \$175.00
 - Check with Biology

- Trough Pool
 - \$104.00
 - Used stores
 - Craigslist


Cost of Materials


Item	Cost A		Co	st B	% of Total	% of Total
Conversion Kits	\$	250.00	\$	250.00	9.69%	5.92%
Emission Testing	\$ 1	1,000.00	\$	867.00	48.43%	51.33%
Testing Environment	\$	175.00	\$	104.00	8.47%	6.16%
2-Stroke Engine	\$	200.00	\$	169.00	9.69%	10.01%
4-Stroke Engine	\$	240.00	\$	199.00	11.62%	11.78%
Shipping of Engines	\$	75.00	\$	75.00	3.63%	4.44%
Shell Prototype	\$	50.00	\$	50.00	2.42%	2.96%
Oil	\$	25.00	\$	25.00	1.21%	1.48%
Butane Gas	\$	50.00	\$	50.00	2.42%	2.96%
Propane Gas	\$	50.00	\$	50.00	2.42%	2.96%
	\$ 2	2,065.00	\$ 1	1,689.00		

Conclusion

- Butane and Propane are viable options for engine fuel
- $\downarrow C_d \downarrow F_d$
- Testing Environments
 - Trough
- 2-Stroke
- 4-Stroke
- Emissions Testing
- Cost of Materials

[11]

References

[1] L. Arnone, M. Janeck, M. Marcacci, R. Kirchberger, M. Pontoppidan and R. Busi, "Development of a direct injection two-stroke engine for scooters," in *Small Engine Technology Conference and Exhibition, November 28, 2001 - November 30,* 2001, .

[2] B. Douville, P. Ouellette, A. Touchette and B. Ursu, "Performance and emissions of a two-stroke engine fueled using high-pressure direct injection of natural gas," in 1998 SAE International Congress and Exposition, February 23, 1998 - February 26, 1998, .

[3] P. Duret, A. Ecomard and M. Audinet, "A new two-stroke engine with compressed-air assisted fuel injection for high efficiency low emissions applications," in *International Congress and Exposition, February 29, 1988 -March 4,* 1988, .

[4] H. Huang, M. Jeng, N. Chang, Y. Peng, J. H. Wang and W. Chiang, "Improvement of exhaust emissions from a two-stroke engine by direct injection system," in *International Congress and Exposition, March 1, 1993 -March 5,* 1993, .

[5] W. Mitianiec, "Direct injection of fuel mixture in a spark ignition two-stroke engine," in SAE 2002 World Congress, March 4, 2002 - March 7, 2002, .

[6] K. Morikawa, H. Takimoto, T. Kaneko and T. Ogi, "A study of exhaust emission control for direct fuel injection two-stroke engine," in *Small Engine Technology Conference and Exposition, September 28, 1999 -September 30,* 1999, .

[7] P. Rochelle and W. Perrard, "Fuel consumption and emission reduction of a small two-stroke engine through air-assisted fuel injection and delayed-charging," in *International Congress and Exposition, March 1, 1999 -March 4,* 1999,.

[8] Stihl KM 130 R. Accessed 10 Oct 2014. *Firewood Hoarders Club.* http://firewoodhoardersclub.com/forums/index.php?threads/stihl-km-130-r-4-mix-engine.3850/

[9] A. Dave, Development of a Reed Valve Model for Engine Simulations for Two-Stroke Engines, 1st ed., SAE International, 2004.

[10] http://web.mit.edu/16.unified/www/FALL/thermodynamics/notes/node108.html

[11]https://www.youtube.com/watch?v=QvUih9Y2Nmw

References

[12] http://www.calor.co.uk/15kg-butane-gas-bottle.html

[13] http://www.plastic-mart.com/category/41/plastic-stock-tanks-water-troughs

- [14] https://sites.google.com/a/altfuelconv.com/altfuel-llc/where-to-purchase
- [15] https://www.propanecarbs.com/small_engines.html
- [16] http://www.husqvarna.com/us/products/trimmers/128c/#specifications
- [17] http://www.tanakapowerequipment.com/main-navigation/products?d=329,341&p=878
- [18] http://www.brandnewengines.com/21132-

0559.aspx?gclid=Cj0KEQiAneujBRDcvL6f5uybhdABEiQA_ojMgghvNjmKx_PmQjxv0TEOpBZfypPHOrP6kIOj3nKbrBIa Avj08P8HAQ

[19] http://engines.honda.com/models/model-detail/gx25

[20] http://megadepot.com/product/enerac-500-1co-emissions-monitoring-equipment-m500

Any Questions?